Pocl OpenCL conformance

How to run the conformance test suite on your hardware

First you need to enable the suite in the pocl’s external test suite set. This is done by adding switch -DENABLE_TESTSUITES=conformance to the cmake command line. After this make prepare_examples fetches and prepares the conformance suite for testing.

To run a shortened version of the conformance suite, run: ctest -L conformance_suite_mini This might take a few hours on slow hardware. There is also a conformance_suite_micro label, which takes about 20-30 minutes on slow hardware.

To run the full conformance testsuite, run: ctest -L conformance_suite_full Note that this can take a week to finish on slow hardware, and about a day on fast hardware (6C/12T Intel or equivalent).

Known issues with the conformance testsuite

  • the “not” operator test (math_brute_force/bruteforce not) may fail to compile with LLVM 4.0 with certain vector sizes on some hardware. This does not seem to affect the rest of the testsuite in any way, and appears to be fixed with LLVM 5.0

  • a few tests from basic/test_basic may fail / segfault because they request a huge amount of memory for buffers.

  • a few tests from conversions/test_conversions may report failures. This is likely a bug in the test or miscompilation; the same test from branch cl20_trunk of CTS passes.

  • a few tests may run much faster if you limit the reported Global memory size with POCL_MEMORY_LIMIT env var. In particular, “kernel_image_methods” test with “max_images” argument.

  • two tests in api/test_api fail with LLVM 5.0 because of LLVM commit 1c1154229a41b688f9:

    [OpenCL] Do not generate "kernel_arg_type_qual" metadata for non-pointer args

    This is a bug in CTS, which tests for non-pointer type qualifiers, not in pocl. See:

    https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf page 169:

    CL_KERNEL_ARG_TYPE_VOLATILE is returned if the argument is a pointer and the referenced type is declared with the volatile qualifier. Similarly, CL_KERNEL_ARG_TYPE_RESTRICT or CL_KERNEL_ARG_TYPE_CONST is returned if the argument is a pointer and the referenced type is declared with the restrict or const qualifier

Known issues in pocl / things to be aware of

  • Integer division by zero. OpenCL 1.2 specification requires that division by zero on integers results in undefined values, instead of raising exceptions. This requires pocl to install a handler of SIGFPE. Unfortunately signal handlers are per-process not per-thread, and pocl drivers do not run in a separate process, which means that integer division by zero will not raise SIGFPE for the entire pocl library and also the user’s program. The handler may be disabled by setting the env variable POCL_SIGFPE_HANDLER to 0. Note that this is currently only relevant for x86(-64) + Linux, on all other systems this issue is not handled in any way (thus Pocl is likely non-conformant there).
  • Several options to clBuildProgram() are accepted but currently have no effect. This is related mostly to optimization options like -cl-fast-relaxed-math. The -cl-denorms-are-zero and -cl-fp32-correctly-rounded-divide-sqrt options are honored.
  • Many of native_ and half_ variants of kernel library functions are mapped to the “full” variants.
  • the optional OpenGL / D3D / SPIR extensions are not supported
  • clUnloadCompiler() only actually unload LLVM after all programs & kernels have been released.
  • clSetUserEventStatus() called with negative status. The Spec leaves the behaviour in this case as “implementation defined”, and this part of pocl is only very lightly tested by the conformance tests. clSetUserEventStatus() called with CL_COMPLETE works as expected, and is heavily used by the conversions conformance test.

Conformance tests results (kernel library precision) on tested hardware

Note that it’s impossible to test double precision on the entire range, therefore the results may vary.

x86-64 CPU with AVX2+FMA, LLVM 4.0, tested on Nov 1, 2017

add 0.00 {0x0p+0, 0x0p+0}
addD 0.00 {0x0p+0, 0x0p+0}
assignment 0.00 0x0p+0
assignmentD 0.00 0x0p+0
cbrt 0.50 -0x1.5629d2p+116
cbrtD 0.59 0x1.0000000000136p+1022
ceil 0.00 0x0p+0
ceilD 0.00 0x0p+0
copysign 0.00 {0x0p+0, 0x0p+0}
copysignD 0.00 {0x0p+0, 0x0p+0}
cos 2.37 0x1.1338ccp+20
cosD 2.27 -0x1.d10000000074p+380
cosh 2.41 -0x1.602166p+2
coshD 1.43 -0x1.98000000003efp+5
cospi 1.94 0x1.d73b56p-2
cospiD 2.46 -0x1.adffffffffa91p-2
divide 0.00 {0x0p+0, 0x0p+0}
divideD 0.00 {0x0p+0, 0x0p+0}
exp 0.95 -0x1.762532p+2
expD 0.94 0x1.2f0000000023dp+7
exp10 0.79 -0x1.309022p+5
exp10D 0.64 -0x1.34ffffffffcc9p+8
exp2 0.79 -0x1.fa3d0ep+6
exp2D 0.75 -0x1.ff00000000417p+9
expm1 1.00 -0x1.7a0002p-25
expm1D 0.99 -0x1.26p+5
fabs 0.00 0x0p+0
fabsD 0.00 0x0p+0
fdim 0.00 {0x0p+0, 0x0p+0}
fdimD 0.00 {0x0p+0, 0x0p+0}
floor 0.00 0x0p+0
floorD 0.00 0x0p+0
fma 0.00 {0x0p+0, 0x0p+0, 0x0p+0}
fmaD 0.00 {0x0p+0, 0x0p+0, 0x0p+0}
fmax 0.00 {0x0p+0, 0x0p+0}
fmaxD 0.00 {0x0p+0, 0x0p+0}
fmin 0.00 {0x0p+0, 0x0p+0}
fminD 0.00 {0x0p+0, 0x0p+0}
fmod 0.00 {0x0p+0, 0x0p+0}
fmodD 0.00 {0x0p+0, 0x0p+0}
fract { 0.00, 0.00} {0x0p+0, 0x0p+0}
fractD { 0.00, 0.00} {0x0p+0, 0x0p+0}
frexp { 0.00, 0} 0x0p+0
frexpD { 0.00, 0} 0x0p+0
hypot 1.93 {0x1.17c998p-127, -0x1.5fedb8p-127}
hypotD 1.73 {0x1.5d2ebeed7663cp-1022, 0x1.67457048a2318p-1022}
ldexp 0.00 {0x0p+0, 0}
ldexpD 0.00 {0x0p+0, 0}
log10 0.50 0x1.7fee2ep-1
log10D 0.50 0x1.9100000000639p+1022
log 0.63 0x1.7fcb3ep-1
logD 0.75 0x1.7d00000000381p+0
log1p 1.00 -0x1.fa0002p-126
log1pD 1.00 -0x1.e000000000001p-1022
log2 0.59 0x1.1107a2p+0
log2D 0.72 0x1.120000000063dp+0
logb 0.00 0x0p+0
logbD 0.00 0x0p+0
mad 0.00 {0x0p+0, 0x0p+0, 0x0p+0} no ULP check
madD 0.00 {0x0p+0, 0x0p+0, 0x0p+0} no ULP check
maxmag 0.00 {0x0p+0, 0x0p+0}
maxmagD 0.00 {0x0p+0, 0x0p+0}
minmag 0.00 {0x0p+0, 0x0p+0}
minmagD 0.00 {0x0p+0, 0x0p+0}
modf { 0.00, 0.00} {0x0p+0, 0x0p+0}
modfD { 0.00, 0.00} {0x0p+0, 0x0p+0}
multiply 0.00 {0x0p+0, 0x0p+0}
multiplyD 0.00 {0x0p+0, 0x0p+0}
nan 0.00 0x0p+0
nanD 0.00 0x0p+0
nextafter 0.00 {0x0p+0, 0x0p+0}
nextafterD 0.00 {0x0p+0, 0x0p+0}
pow 0.82 {0x1.91237cp-1, 0x1.4da146p+8}
powD 0.80 {0x1.2bfb4b18164c9p+65, -0x1.b78438ae9c3bdp-8}
pown 0.65 {-0x1.9p+6, -2}
pownD 0.62 {-0x1.7ffffffffffffp+1, 3}
powr 0.82 {0x1.91237cp-1, 0x1.4da146p+8}
powrD 0.80 {0x1.2bfb4b18164c9p+65, -0x1.b78438ae9c3bdp-8}
remainder 0.00 {0x0p+0, 0x0p+0}
remainderD 0.00 {0x0p+0, 0x0p+0}
remquo { 0.00, 0} 0x0p+0
remquoD { 0.00, 0} 0x0p+0
rint 0.00 0x0p+0
rintD 0.00 0x0p+0
rootn 0.69 {-0x1.e2fe6ep-74, -141}
rootnD 0.68 {-0x1.8000000000001p+1, 3}
round 0.00 0x0p+0
roundD 0.00 0x0p+0
rsqrt 1.49 0x1.019566p+124
rsqrtD 1.49 0x1.01ffffffffa39p+1016
sin 2.48 -0x1.09f07ap+21
sinD 1.87 -0x1.f2fffffffffbap+32
sincos { 2.48, 2.37} {0x1.09f07ap+21, 0x1.1338ccp+20}
sincosD { 1.87, 2.27} {0x1.f2fffffffffbap+32, 0x1.d10000000074p+380}
sinh 2.32 0x1.e76078p+2
sinhD 1.53 -0x1.3100000000278p+4
sinpi 2.13 -0x1.45f3ep-9
sinpiD 2.50 -0x1.46000000000dap-7
sqrt 0.00 0x0p+0
sqrtD 0.00 0x0p+0
subtract 0.00 {0x0p+0, 0x0p+0}
subtractD 0.00 {0x0p+0, 0x0p+0}
tan 4.35 -0x1.b4eba2p+22
tanD 4.00 -0x1.2f000000003edp+333
tanh 1.18 -0x1.ca742ap-1
tanhD 1.19 0x1.f400000000395p-1
tanpi 4.21 -0x1.f99d16p-3
tanpiD 4.09 0x1.f6000000001d3p-3
trunc 0.00 0x0p+0
truncD 0.00 0x0p+0